MATH 4377 - MATH 6308

Demetrio Labate

dlabate@uh.edu

- Section 2.3 Composition of Linear Transformations
- Section 2.4 Invertibility and Isomorphism
- Section 2.5 Change of Coordinate Matrix
- Section 2.6 Dual Spaces

Composition of Linear Transformations and Matrix Multiplication

Section 2.3

Theorem about the composition of linear transformations

Theorem

Let V, W, Z be vector spaces over the same field. Let $T : V \to W$ and $U : W \to Z$ be linear. Then $U \circ T : V \to Z$ is linear.

Theorem about the composition of linear transformations

Theorem

Let V, W, Z be vector spaces over the same field. Let $T : V \to W$ and $U : W \to Z$ be linear. Then $U \circ T : V \to Z$ is linear.

Proof.

We want to verify that linearity holds for $U \circ T$:

(i)
$$U \circ T(\alpha v) = U(T(\alpha v)) = U(\alpha T(v)) = \alpha U(T(v))$$

(ii)
 $U \circ T(v + v') = U(T(v + v')) = U(T(v) + T(v')) = U(T(v)) + U(T(v'))$

- Let $U, S, T : V \rightarrow V$ linear. Then
 - $U \circ (S + T) = U \circ S + U \circ T$
 - $(U+S) \circ T = U \circ T + S \circ T$
 - $U \circ (S \circ T) = (U \circ S) \circ T$

•
$$I \circ U = U \circ I = U$$
 (*I* is the identity)

• $a(U \circ S) = (aU) \circ S = U \circ (aS)$ (a scalar)

Matrix of a composition

Goal: Want to write the matrix representation of $U \circ T$.

Theorem

Let $T: V \to W$, $U: W \to Z$ be linear transformations on finite-dimensional vector spaces. Let $\alpha = {\mathbf{v}_j}, \beta = {\mathbf{w}_k}, \gamma = {\mathbf{z}_i}$ be the ordered basis for V, W, and Z. Then $[U \circ T]^{\gamma}_{\alpha} = [U]^{\gamma}_{\beta}[T]^{\beta}_{\alpha}$.

Matrix of a composition

Goal: Want to write the matrix representation of $U \circ T$.

Theorem

Let $T: V \to W$, $U: W \to Z$ be linear transformations on finite-dimensional vector spaces. Let $\alpha = {\mathbf{v}_j}, \beta = {\mathbf{w}_k}, \gamma = {\mathbf{z}_i}$ be the ordered basis for V, W, and Z. Then $[U \circ T]^{\gamma}_{\alpha} = [U]^{\gamma}_{\beta}[T]^{\beta}_{\alpha}$.

Proof.

We can write the matrices $[T]^{eta}_{lpha}=(b_{kj})$ and $[U]^{\gamma}_{eta}=(a_{ik}).$ Then

$$(U \circ T)(\mathbf{v}_j) = U(T(\mathbf{v}_j)) = U\left(\sum_k b_{kj}\mathbf{w}_k\right) = \sum_k b_{kj}U(\mathbf{w}_k)$$

$$=\sum_{k}b_{kj}\left(\sum_{i}a_{ik}\mathbf{z}_{i}\right)=\sum_{i}\left(\sum_{k}a_{ik}b_{kj}\right)\mathbf{z}_{i}.$$

Consequently, the matrix representation of $[U \circ T]^{\gamma}_{\alpha}$ is $c_{ij} = \sum_{k} a_{ik} b_{kj}$.

D. Labate (UH)

Definition

Let A be an $m \times n$ matrix and B an $n \times p$ matrix. Define the *matrix* product of A and B to be the $m \times p$ matrix $C = (c_{ij})$ given by

$$(AB)_{ij}=c_{ij}=\sum_{k=1}^n a_{ik}b_{kj}.$$

Ex:

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix} =$$

Let $A = (a_{ij})$ be an $m \times n$ matrix.

We can denote the matrix explicitly as

(a_{11})	a ₁₂		a_{1n}
:	÷	÷	:
a_{m1}	a _{m2}		a _{mn})

Sometimes it is useful to represent the matrix in terms of its columns

$$\begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{pmatrix}$$

Note: the matrix product is not commutative!

Definition

- Let $A \in M_{m \times n}$, $B, C \in M_{n \times p}$, $D, E \in M_{q \times m}$. Then
 - (B+C) = AB + AC
 - (D + E)A = DA + EA

• If V is an n dimensional vector space with ordered basis β , then $[I_V]_{\beta} = I_n$.

$$I_m A = A I_n$$

Theorem

Let V, W be finite-dimensional vector spaces with ordered bases β and γ and $T: V \to W$ be linear. Then $\forall \mathbf{v} \in V$:

 $[T(\mathbf{v})]_{\gamma} = [T]_{\beta}^{\gamma} [\mathbf{v}]_{\beta}.$

Theorem

Let V, W be finite-dimensional vector spaces with ordered bases β and γ and $T: V \to W$ be linear. Then $\forall \mathbf{v} \in V$:

$$[T(\mathbf{v})]_{\gamma} = [T]_{\beta}^{\gamma} [\mathbf{v}]_{\beta}.$$

Proof. Let $\beta = \{v_1, \ldots, v_n\}$ and $\gamma = \{w_1, \ldots, w_m\}$. We can expand any $v \in V$ w.r. to β , so it will be sufficient to examine one basis vector. For J fixed, we can write

$$T(v_J) = \sum_{i=1}^{J} a_{iJ} w_i$$

Hence

$$[T(v_J)]_{\gamma} = (a_{1J}, \ldots, a_{mJ})$$

and

$$[T]^{\gamma}_{\beta}[v_J]_{\beta}=(a_{ij})e_J=(a_{1J},\ldots,a_{mJ}),$$

where $(a_{ij})e_J$ is extracting the *J*-th column of the matrix.

D. Labate (UH)

Multiplying a $m \times n$ matrix A and a vector $\mathbf{x} \in F^n$ transforms x into a vector $A\mathbf{x} \in F^n$.

Let
$$A = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{pmatrix}$$
 and $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

$$A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n$$

showing that Ax is a linear combination of the columns of A.

Matrix vector multiplication

Let A be a $m \times n$ matrix, B a $n \times p$ matrix and $\mathbf{x} \in F^p$ a vector. We use the notation $B = \begin{pmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_p \end{pmatrix}$

We have that ABx = A(Bx), so that A acts on the *n*-vector Bx

Then

$$B\mathbf{x} = x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + \dots + x_p\mathbf{b}_p$$

and

$$AB\mathbf{x} = x_1A\mathbf{b}_1 + x_2A\mathbf{b}_2 + \dots + x_pA\mathbf{b}_p = \begin{pmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Hence $AB = (A\mathbf{b}_1 \ A\mathbf{b}_2 \ \dots \ A\mathbf{b}_p)$, showing that: each column of AB is a linear combination of the columns of Ausing weights from the corresponding columns of B.

Definition

Let $A \in M_{m \times n}(F)$. Define $L_A : F^n \to F^m$ by

$$L_A(\mathbf{x}) = A\mathbf{x},$$

where $\mathbf{x} \in F_n$ is a column vector.

 L_A is the **left-multiplication transformation** given by the matrix A.

Let A, B be $m \times n$ matrix and β, γ be the standard ordered bases of F^n and F^m , then:

- $[L_A]_{\beta}^{\gamma} = A$

- $I_{aA} = aL_A \quad a \in F$
- For $T: F^n \to F^m$, there exists a unique $m \times n$ matrix C such that $T = L_C$ and $[T]^{\gamma}_{\beta} = C$.

• If
$$m = n$$
, then $L_{I_n} = I_{F_n}$

Invertibility and Isomorphism

Section 2.4

Definition

Let V, W be vector spaces. Let $T : V \to W$ linear. We define $U : W \to V$ to be the *inverse* of T if $T \circ U = I_W$ and $U \circ T = I_V$. If T has an inverse, T is called *invertible*.

Definition

Let V, W be vector spaces. Let $T : V \to W$ linear. We define $U : W \to V$ to be the *inverse* of T if $T \circ U = I_W$ and $U \circ T = I_V$. If T has an inverse, T is called *invertible*.

Remarks about continuous functions from Appendix B:

- If f has an inverse, the inverse is unique. We write f^{-1} for it.
- Given sets A, B, a function f : A → B is invertible if and only if f is one-to-one and onto.

This observation applies to linear transformations.

Let $T: P_1(\mathbb{R}) \to \mathbb{R}^2$ be defined as T(a + bx) = (a, a + b). Verify that: $T^{-1}: \mathbb{R}^2 \to P_1(\mathbb{R}), \ T^{-1}(c, d) = c + (d - c)x$

Let $T: P_1(\mathbb{R}) \to \mathbb{R}^2$ be defined as T(a + bx) = (a, a + b). Verify that:

$$T^{-1}: \mathbb{R}^2 \to P_1(\mathbb{R}), \ T^{-1}(c,d) = c + (d-c)x$$

SOLUTION.
(i)
$$(T^{-1} \circ T)(a + bx) = T^{-1}(T(a + bx)) = T^{-1}(a, a + b) = a + (a + b - a)x = a + bx$$

(ii)
$$(T \circ T^{-1})(c, d) = T(T^{-1}(c, d)) = T(c + (d - c)x) = (c, c + d - c) = (c, d)$$

If $T: V \to W$ is linear and invertible, then the inverse T^{-1} is linear also.

If $T: V \to W$ is linear and invertible, then the inverse T^{-1} is linear also.

Proof.
(i) For
$$v \in V$$
, let $T(v) = w$. For $c \in F$,
 $T^{-1}(cw) = T^{-1}(cT(v)) = T^{-1}(T(cv)) = cv = cT^{-1}(w)$.
(ii) For $v_1, v_2 \in V$, let $T(v_1) = w_1$, $T(v_2) = w_2$.
 $T^{-1}(w_1 + w_2) = T^{-1}(T(v_1) + T(v_2)) = T^{-1}(T(v_1 + v_2)) = v_1 + v_2$
 $= T^{-1}(w_1) + T^{-1}(w_2)$.

Lemma

Lemma

Let $T: V \to W$ linear and invertible. Let V, W be finite dimensional. Then

 $\dim V = \dim W.$

Lemma

Lemma

Let $T: V \to W$ linear and invertible. Let V, W be finite dimensional. Then

$$\dim V = \dim W.$$

Proof.

Since T is invertible, it is one-to-one and onto, hence nullity(T) = 0 and $rank(T) = \dim W$.

By the dimension theorem,

 $nullity(T) + rank(T) = \dim V.$

This implies that dim $W = rank(T) = \dim V$.

Definition

Let A be an $n \times n$ matrix. Say A is *invertible* if there exists an $n \times n$ matrix B such that

 $AB = I_n = BA.$

Remark: Such a *B* is unique, if it exists. Thus, we can write A^{-1} for *B*.

Recall

Provided $ad - cb \neq 0$:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - cb} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Ex: Given

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 9 \end{bmatrix},$$

find A^{-1} .

Let V, W be finite dimensional vector spaces with ordered bases β, γ respectively. Let $T : V \to W$ linear. Then T is invertible if and only if $[T]^{\gamma}_{\beta}$ is an invertible matrix.

Moreover, in this case, $[T^{-1}]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^{-1}$.

Let V, W be finite dimensional vector spaces with ordered bases β, γ respectively. Let $T : V \to W$ linear. Then T is invertible if and only if $[T]^{\gamma}_{\beta}$ is an invertible matrix.

Moreover, in this case, $[T^{-1}]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^{-1}$.

Proof.

The transformation $T: V \to W$ has matrix representation $[T]^{\gamma}_{\beta}$ If T is invertible, then it is a linear transformation $T^{-1}: W \to V$ with matrix representation $[T^{-1}]^{\gamma}_{\gamma}$ This also implies that $[T^{-1}]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^{-1}$, so that the matrix $[T]^{\gamma}_{\beta}$ is invertible.

Converse direction is left for exercise.

Corollary

Let V be a finite dimensional vector spaces with ordered basis β respectively. Let $T : V \to V$ linear. Then T is invertible if and only if $[T]_{\beta}$ is an invertible matrix. Moreover, in this case, $[T^{-1}]_{\beta} = ([T]_{\beta})^{-1}$.

Corollary

An $n \times n$ matrix A is invertible if and only if L_A is invertible and, in this case, $(L_A)^{-1} = L_{A^{-1}}$.

Definition

Let V, W be vector spaces. Say V is *isomorphic* to W if and only if there exists $T : V \to W$ linear and invertible. Such a T is called an *isomorphism* from V onto W.

Remark: The property of being isomorphic is an equivalence relation on the set of vector spaces over a given field. Informally, a vector space V is isomorphic to W if every vector space calculation in V is accurately reproduced in W, and vice versa.

Let V, W be finite dimensional vector spaces (over the same field). Then V is isomorphic to W if and only if dim $V = \dim W$.

Proof for \Rightarrow This was proved by Lemma in slide 23.

Proof for \leftarrow Suppose dim $V = \dim W$. We need to show that there exists a linear and invertible map $T : V \to W$.

Let $B = \{v_1, \ldots, v_n\}$ be a basis of V and $G = \{w_1, \ldots, w_n\}$ a basis of WWe define a linear transformation $T : V \to W$ by $T(v_i) = w_i$, for $i = 1, \ldots, n$.

Since $span\{T(v_i) : i = 1, ..., n\} = span\{w_i : i = 1, ..., n\} = W$, then T is onto.

By the Dimension Theorem, $nullity(T) + rank(T) = \dim V$ implying that $nullity(T) + \dim W = \dim V$ so that nullity(T) = 0. This implies that T is one-to-one.

Since T is one-to-one and onto, it is invertible.

D. Labate (UH)

Corollary

Let V be a vector space over F. Then V is isomorphic to F^n if and only if dim V = n.

Examples of vector space isomorphic to \mathbb{R}^n :

- P_{n-1} the set of polynomial of degree at most n-1
- 2 $M^{p \times q}$, pq = n, the class $p \times q$ matrices where pq = n.

In these examples one can construct an invertible linear map from \mathbb{R}^n into these spaces.

Let V, W be finite dimensional vector spaces over F. Let dim V = n, dim W = m. Let β, γ be ordered bases for V and W. Then

$$\Phi: \mathcal{L}(V, W) \to M_{m \times n}(F)$$

is an isomorphism.

Proof. We need to show that Φ is an isomorphism. A direct argument shows that Φ is linear. In fact, for any $T, U \in \mathcal{L}(V, W)$, with matrix representations $[T]^{\gamma}_{\beta}$ and $[U]^{\gamma}_{\beta}$, respectively, where $\beta = \{v_1, \ldots, v_n\}$ is a basis of V and $\gamma = \{w_1, \ldots, w_m\}$ a basis of W, we have that

$$egin{aligned} [\mathcal{T}+\mathcal{U}]^{\gamma}_{eta} = [\mathcal{T}]^{\gamma}_{eta} + [\mathcal{U}]^{\gamma}_{eta} \ & [c\mathcal{T}]^{\gamma}_{eta} = c[\mathcal{T}]^{\gamma}_{eta} \end{aligned}$$

We also need to show that Φ is invertible.

The nullspace is $N(\Phi) = \{T : V \to W : [T]_{\beta}^{\gamma} = 0^{m \times n}\}$ and consists of the linear transformations mapping every vector to the 0 vector. This space contains only the transformation mapping every vector ot 0, hence Φ is one-to-one.

For every matrix $A = [a_{ij}]$, $A \in M^{m \times n}$ we can construct the linear transformation

$$T(v_j) = \sum_{i=1}^m a_{ij} w_i, \quad j = 1, \dots, n$$

showing that Φ is onto.

Since Φ is one-to-one and onto, it is invertible.

Remark: dim $\mathcal{L}(V, W) = \dim M_{m \times n} = n \cdot m = (\dim V) \cdot (\dim W)$.

Definition

let β be be ordered basis for an *n*-dimensional vector space V over the field F. The standard representation of V with respect to β is the function

$$\phi_{\beta}: V \to F^n$$

given by $\phi_{\beta}(x) = [x]_{\beta}$.

Theorem

For any finite dimensional vector space V with ordered basis β , the map ϕ_{β} is an isomorphism.

Example.

Let $\beta = \{b_1, b_2\}$ where $b_1 = (3, 3, 1)$, $b_2 = (0, 1, 3)$. Let $H = span\{b_1, b_2\}$. Find the standard representation of H with respect to β for x = (9, 13, 15).

We need to find c_1, c_2 such that $x = c_1b_1 + c_2b_2$.

Solving the equation, we find $\phi_{\beta}(x) = [x]_{\beta}$.

The Change of Coordinate Matrix

Section 2.5

Theorem

Let β,β' be ordered bases for the finite-dimensional vector space V. Let $Q=[I_V]^{\beta}_{\beta'}.$ Then

- Q is invertible
- $each large Q[\mathbf{v}]_{\beta} = Q[\mathbf{v}]_{\beta'}.$

Remark: Q is called the *change of coordinates matrix*. It changes β' -coordinates to β -coordinates.

Theorem

Let β,β' be ordered bases for the finite-dimensional vector space V. Let $Q=[I_V]^{\beta}_{\beta'}.$ Then

- Q is invertible
- $each large Q[\mathbf{v}]_{\beta} = Q[\mathbf{v}]_{\beta'}.$

Remark: *Q* is called the *change of coordinates matrix*. It changes β' -coordinates to β -coordinates.

Proof. (1) Q is one-to-one since $N(Q) = \{0\}$ and it is one onto since for any v in the β basis we can find a v in the β' basis.

 $\begin{array}{l} (2) \ [\mathcal{T}(\mathbf{v})]_{\gamma} = [\mathcal{T}]_{\beta}^{\gamma}[\mathbf{v}]_{\beta} \\ \text{Also} \ [I_{\nu}(\mathbf{v})]_{\beta} = [I_{\nu}]_{\beta'}^{\beta}[\mathbf{v}]_{\beta'} \\ \text{Hence} \ [\mathbf{v}]_{\beta} = [I_{\nu}]_{\beta'}^{\beta}[\mathbf{v}]_{\beta'} \end{array}$

Let $\beta' = \{(2,4), (3,1)\} := \{v_1, v_2\}, \ \beta = \{(1,1), (1,-1)\}.$ Find the change of coordinates matrix $Q = [I_V]_{\beta'}^{\beta}$.

Let $\beta' = \{(2,4), (3,1)\} := \{v_1, v_2\}, \ \beta = \{(1,1), (1,-1)\}.$ Find the change of coordinates matrix $Q = [I_V]_{\beta'}^{\beta}$.

SOLUTION:

$$I(v_1) = (2, 4) = a_1(1, 1) + a_2(1, -1) = (a_1 + a_2, a_1 - a_2)$$

Solving the system, one finds $a_1 = 3, a_2 = -1$

$$I(v_2) = (3,1) = b_1(1,1) + b_2(1,-1) = (b_1 + b_2, b_1 - b_2)$$

Solving the system, one finds $b_1 = 2, b_2 = 1$

Thus, we have that
$$\displaystyle Q=egin{pmatrix} 3&2\-1&1 \end{pmatrix}$$

Let $T: V \to V$ linear. What is the relationship between $[T]_{\beta}$ and $[T]_{\beta'}$? Let $T: V \to V$ linear. What is the relationship between $[T]_{\beta}$ and $[T]_{\beta'}$?

Recall that if $T: V \to V$ with basis β for both domain and codomain then the natrix representation of T is $[T]_{\beta}^{\beta} = [T]_{\beta}$

Let $T: V \to V$ linear with V finite dimensional vector space. Let β, β' be ordered bases for V. Let $Q = [I_V]_{\beta'}^{\beta}$. Then

$$[T]_{\beta'}=Q^{-1}[T]_{\beta}Q.$$

Let $T: V \to V$ linear with V finite dimensional vector space. Let β, β' be ordered bases for V. Let $Q = [I_V]^{\beta}_{\beta'}$. Then

$$[T]_{\beta'}=Q^{-1}[T]_{\beta}Q.$$

Idea of Proof

$$[T]_{\beta'}^{\beta'} = [I_V]_{\beta'}^{\beta} [T]_{\beta}^{\beta} [I_V]_{\beta}^{\beta'}$$

Example

Let
$$\beta = \{(1,1), (1,-1)\}, \ \beta' = \{(2,4), (3,1)\}.$$
 Knowing that $[T]_{\beta} = \begin{pmatrix} 3 & 1 \\ -1 & 3 \end{pmatrix},$

find $[T]_{\beta'}$.

Example

Let
$$\beta = \{(1,1), (1,-1)\}, \ \beta' = \{(2,4), (3,1)\}.$$
 Knowing that $[T]_{\beta} = \begin{pmatrix} 3 & 1 \\ -1 & 3 \end{pmatrix},$

find $[T]_{\beta'}$.

SOLUTION:

From prior example, we have that the change of variables matrix is $Q = \begin{pmatrix} 3 & 2 \\ -1 & 1 \end{pmatrix}$. By theorem above, $[T]_{\beta'} = Q^{-1}[T]_{\beta}Q$. We compute $Q^{-1} = \frac{1}{3+2} \begin{pmatrix} 1 & -2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 1/5 & -2/5 \\ 1/5 & 3/5 \end{pmatrix}$. Therefore:

$$[T]_{\beta'} = Q^{-1}[T]_{\beta}Q = \begin{pmatrix} 1/5 & -2/5 \\ 1/5 & 3/5 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ -1 & 1 \end{pmatrix}$$

Solving the matrix multiplication, we find

$$[T]_{\beta'} = \begin{pmatrix} 4 & 1 \\ -2 & 2 \end{pmatrix}$$

Definitions

Let $A, B \in M_{n \times n}(F)$. We say B is *similar* to A if and only if there exists an invertible $Q \in M_{n \times n}(F)$:

$$B=Q^{-1}AQ.$$

Remark: Being similar is an equivalence relation on $M_{n \times n}(F)$.

Dual Spaces

Section 2.6

Definition

Let V be a vector space over the field F. A linear transformation $f: V \rightarrow F$, where F is considered as a vector space over itself, is called a *linear functional*.

Examples:

1.
$$f: \mathbb{R}^n \to \mathbb{R}, (x_1, \ldots, x_n) \mapsto x_1$$

2.
$$f: \mathbb{R}^2 \rightarrow \mathbb{R}$$
, $(x_1, x_2) \mapsto 2x_1 - 3x_2$

3.
$$f: \mathbb{R}^n \to \mathbb{R}, (x_1, \ldots, x_n) \mapsto x_1 + \ldots + x_n$$

4. tr : $M_{n \times n} \to \mathbb{R}$, $A \mapsto tr(A)$

5.
$$eval_5: \{g: \mathbb{R} \to \mathbb{R}\} \to \mathbb{R}, g \mapsto g(5).$$

6. Let V be a vector space over F, β = {v₁,..., v_n} ordered basis. Let f_i : V → F be defined by: f_i(v) = the *i*-th coordinate of v with respect to β. In other words, if [v]_β = (a₁,..., a_n), then f_i(v) = a_i. In particular, f_i(v_j) = δ_{ij}.

Let $V = \mathbb{R}^2$. Let $\beta = \{(2,1), (3,1)\} := \{v_1, v_2\}$. Find f_1, f_2 .

Let
$$V = \mathbb{R}^2$$
. Let $\beta = \{(2,1), (3,1)\} := \{v_1, v_2\}$. Find f_1, f_2 .

SOLUTION. For $v \in \mathbb{R}^2$, $[v]_\beta = (a_1, a_2)$ and $f_1(v) = a_1, f_2(v) = a_2$. $(x, y) = a_1(2, 1) + a_2(3, 1) = (2a_1 + 3a_2, a_1 + a_2)$ Solving the linear system, we obtain:

$$a_1 = -x + 3y, \ a_2 = x - 2y$$

Thus:

$$f_1(v) = -x + 3y, f_2(v) = x - 2y$$

Example

Given $f_1(x, y) = -x + 3y$ and $f_2(x, y) = x - 2y$, find $\beta = (v_1, v_2) \subset \mathbb{R}^2$.

Example

Given $f_1(x, y) = -x + 3y$ and $f_2(x, y) = x - 2y$, find $\beta = (v_1, v_2) \subset \mathbb{R}^2$. SOLUTION. We can write any $v = (x, y) \in \mathbb{R}^2$ as

$$v=f_1v_1+f_2v_2$$

If we choose $f_1 = 1, f_2 = 0$, then $v_1 = f_1 v_1$ yielding the system of equations

$$\begin{array}{rcl} -x+3y &=& 1\\ x-2y &=& 0 \end{array}$$

with solution x = 2, y = 1, so that we obtain $v_1 = (2, 1)$. Similarly, choosing $f_1 = 0, f_2 = 1$, then $v_2 = f_2 v_2$ yielding the system of equations

$$\begin{array}{rcl} -x+3y &=& 0\\ x-2y &=& 1 \end{array}$$

with solution x = 3, y = 1, so that we obtain $v_2 = (3, 1)$.

Definition

For a vector space V over F, let the dual space V^* be $\mathcal{L}(V, F)$.

Remark: For a finite-dimensional V

$$\dim V^* = \dim \mathcal{L}(V, F) = \dim V \cdot \dim F = \dim V$$

This means that V and V^{*} are isomorphic as vector spaces over F. Also, we can define V^{**} as the dual of V^* .

Let V be a vector space and $\beta = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ ordered basis. Let f_i be the *i*-th coordinate function with respect to β , as defined above. Then $\beta^* = {f_1, \dots, f_n}$ is an ordered basis for V^* and for all $g \in V^*$,

$$g(\mathbf{v}) = \sum_{i=1}^{n} g(\mathbf{v}_i) f_i.$$

Definition

We call β^* the *dual basis* of β .