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Composition of Linear

Transformations and Matrix
Multiplication

Section 2.3
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Theorem about the composition of linear transformations

Let V, W, Z be vector spaces over the same field. Let T: V — W and
U: W — Z belinear. Then Uo T : V — Z is linear.
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Theorem about the composition of linear transformations

Let V, W, Z be vector spaces over the same field. Let T: V — W and
U: W — Z belinear. Then Uo T : V — Z is linear.

Proof.

We want to verify that linearity holds for Uo T:

(i) Ue T(av) = U(T(av)) = U(aT(v)) = aU(T(v))

(ii)

UoT(v+Vv)=U(T(v+ V) =U(T(v)+ T(v)) = U(T(v))+ U(T(v))
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Properties of the composition of linear transformations

Let U,S, T :V — V linear. Then

@ Uo(S+T)=UoS+UoT
(U+S)oT=UoT+SoT
Uo(SoT)=(UoS)oT
loU=Uol=U (Iis the identity)
a(UoS)=(alU)oS =Uo(aS) (ascalar)
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Matrix of a composition

Goal: Want to write the matrix representation of Uo T.

Let 7:V = W, U: W — Z be linear transformations on
finite-dimensional vector spaces. Let a = {v;}, 3 = {wy},v = {z;} be the
ordered basis for V, W, and Z. Then [Uo T] = [U]g[T]g
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Matrix of a composition

Goal: Want to write the matrix representation of Uo T.

Let T:V = W, U: W — Z be linear transformations on
finite-dimensional vector spaces. Let a = {v;}, 3 = {wy},v = {z;} be the
ordered basis for V, W, and Z. Then [Uo T] = [U]g[T]g

Proof.
We can write the matrices [T]5 = (bxj) and [U]} = (aik). Then

(Uo T)(vj) = U(T(vj)) =U (Z bkjwk> = biU(wy)
k k

-Ye, (Z a,.kz,.) 3 (; a,-kbkj> 2

i
. . "/ . _
Consequently, the matrix representation of [U o T]4 is ¢j = Y, aikbyj.
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Matrix product

Definition

Let A be an m x n matrix and B an n X p matrix. Define the matrix
product of A and B to be the m x p matrix C = (c;) given by

(AB),'J' = Cj = Z a,-kbkj.
k=1

Ex:
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Matrix notation

Let A= (aj;) be an m x n matrix.

We can denote the matrix explicitly as

all ai2 . din

dmli adm2 - -- dmn

Sometimes it is useful to represent the matrix in terms of its columns

(a1 a> ... an)
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Properties of matrix product

Note: the matrix product is not commutative!

Definition

Let A€ Mmxn, B,C € Muyxp, D, E € Mgxm. Then
QO A(B+ C)=AB+ AC
Q@ (D+E)A=DA+EA
© a(AB) = A(aB) = (aA)B (a scalar)
@ If V is an n dimensional vector space with ordered basis 3, then
(IV]g = In.
Q IL,A=Al,
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Let V, W be finite-dimensional vector spaces with ordered bases 8 and ~
and T : V — W be linear. Then Yv € V :

[T()]y = [T15V]s-
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Let V, W be finite-dimensional vector spaces with ordered bases 8 and ~
and T : V — W be linear. Then Yv € V :

[T()]y = [T15V]s-

Proof. Let f ={v1,...,va} and v = {wy,..., wn}.
We can expand any v € V w.r. to 3, so it will be sufficient to examine
one basis vector. For J fixed, we can wngite

T(v)) =) auw
Hence =1
[T(VJ)]7 = (alJ, ey amJ)
and
[T15[vils = (ai)es = (214, - - amy),

where (ajj)ey is extracting the J-th column of the matrix.
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Matrix vector multiplication

Multiplying a m x n matrix A and a vector x € F" transforms x into a
vector Ax € F".

X1
X2

Let A=(a; a, ... a,)andx=

Xn

Ax = xja1 + xpaz + - - - + Xpap

showing that Ax is a linear combination of the columns of A.
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Matrix vector multiplication

Let A be a m x n matrix, B a n X p matrix and x € FP a vector.
We use the notation B = (b; by ... bp)

We have that ABx = A(Bx), so that A acts on the n-vector Bx

Then
Bx = x1b1 + xob + - - - 4 x,b)

and
X1
X2
ABx = x1Aby + x0Aby + - - - + XpAbp = (Abl Abs ... Abp)
Xn
Hence AB = (Ab1 Aby ... Ab,,), showing that:

each column of AB is a linear combination of the columns of A
using weights from the corresponding columns of B.
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Left-multiplication transformation

Definition
Let A € Mpxn(F). Define L : F" — F™ by

La(x) = Ax,

where x € F,, is a column vector.
La is the left-multiplication transformation given by the matrix A.
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Properties of left-multiplication transformation

Let A, B be m x n matrix and 3, be the standard ordered bases of F"
and F, then:

Q Lp: F"— F™is linear.

Q [Laj=A

Q@ La=Lg&s A=B

Q Layg=La+Lg,

Q@ L,ao=aly, acF

@ For T : F™" — F™, there exists a unique m X n matrix C such that

T=Lcand [T]},=C.
@ If m=n, then L) = If,
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Invertibility and Isomorphism

Section 2.4
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Invertible transformation

Definition

Let V, W be vector spaces. Let T : V — W linear. We define

U: W — V to be the inverseof T if ToU =1y and Uo T = Iy,.
If T has an inverse, T is called invertible.
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Invertible transformation

Definition

Let V, W be vector spaces. Let T : V — W linear. We define
U: W — V to be the inverseof Tif ToU=1Iy and Uo T = |y.
If T has an inverse, T is called invertible.

Remarks about continuous functions from Appendix B:
o If f has an inverse, the inverse is unique. We write f~1 for it.

@ Given sets A, B, a function f : A — B is invertible if and only if f is
one-to-one and onto.

This observation applies to linear transformations.
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Let T : P1(R) — R? be defined as T(a + bx) = (a,a + b). Verify that:

T1:R? = P(R), T }c,d)=c+(d—c)x
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Let T : P1(R) — R? be defined as T(a + bx) = (a,a + b). Verify that:
T1:R? = P(R), T }c,d)=c+(d—c)x

SOLUTION.

() (TroT)(a+bx)=T YT(a+ bx)) = Tfl(a, a+b)=

at+(a+b—a)x=a+ bx

(ii)
(ToT (e, d) = T(T™(c,d)) = T(c+(d—c)x) = (c,c+d—c) = (c,d)
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If T:V — W is linear and invertible, then the inverse T—1 is linear also.
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If T:V — W is linear and invertible, then the inverse T—1 is linear also.

Proof.
(i) Forve V, let T(v) =w. For c € F,

T Yew) = T HcT(v) = T HT(cv)) = cv = cTH(w).

(ii) For vi,vo € V, let T(v1) = wy, T(v2) = wo.

l(T(Vl) + T(Vg)) = T_l(T(Vl + V2)) =vi+w
Hw) + T ().

T_l(W1+W2) = T
-
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Let T : V — W linear and invertible. Let V, W be finite dimensional.
Then

dimV =dim W.
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Let T : V — W linear and invertible. Let V, W be finite dimensional.
Then

dimV =dim W.

Proof.
Since T is invertible, it is one-to-one and onto, hence nullity(T) = 0 and
rank(T) =dim W.
By the dimension theorem,
nullity(T) + rank(T) = dim V.

This implies that dim W = rank(T) = dim V.
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Invertible matrix

Definition

Let A be an n x n matrix. Say A is invertible if there exists an n X n
matrix B such that

AB = I, = BA.

Remark: Such a B is unique, if it exists. Thus, we can write A~1 for B.
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Recall

Provided ad — cb # 0:
-1
a bl = 1 d —b
c dl  ad—ch|-c a

14
S

Ex: Given

find A~ L.
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Let V, W be finite dimensional vector spaces with ordered bases 3,y
respectively. Let T : V — W linear. Then T is invertible if and only if
[T]} is an invertible matrix.

Moreover, in this case, [T1]5 = amy
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Let V, W be finite dimensional vector spaces with ordered bases 3,y
respectively. Let T : V — W linear. Then T is invertible if and only if
[T]} is an invertible matrix.

Moreover, in this case, [T~ 1]7 ([T]V)

Proof.

The transformation T : V — W has matrix representation [T]7

If T is invertible, then it is a linear transformation T~1: W — V with
matrix representation [T~ l]AY

This also implies that [T~1]5 = ([T13)~, so that the matrix [T]} is
invertible.

Converse direction is left for exercise.
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Corollaries

Let V be a finite dimensional vector spaces with ordered basis 3
respectively. Let T : V — V linear. Then T is invertible if and only if
[T]s is an invertible matrix.

Moreover, in this case, [T 1] = ([T]5)~ .

An n x n matrix A is invertible if and only if L4 is invertible and, in this
case, (La)~ 1 =Lp.
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Isomorphism

Definition

Let V, W be vector spaces. Say V is isomorphic to W if and only if there
exists T : V — W linear and invertible.
Such a T is called an isomorphism from V onto W.

Remark: The property of being isomorphic is an equivalence relation on
the set of vector spaces over a given field.

Informally, a vector space V is isomorphic to W if every vector space
calculation in V is accurately reproduced in W, and vice versa.
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Let V, W be finite dimensional vector spaces (over the same field). Then
V is isomorphic to W if and only if dim V = dim W.

Proof for = This was proved by Lemma in slide 23.

Proof for <= Suppose dim V = dim W. We need to show that there exists
a linear and invertible map T : V — W.

Let B ={vi,...,Vv,} be a basis of V and G = {wy,...,w,} a basis of W
We define a linear transformation 7 : V — W by T(v;) = w;, for
i=1,...,n.

Since span{T(v;):i=1,....,n} =span{w; :i=1,...,n} = W, then T
is onto.

By the Dimension Theorem, nullity(T) + rank(T) = dim V implying that
nullity(T) + dim W = dim V so that nullity(T) = 0. This implies that T
is one-to-one.

Since T is one-to-one and onto, it is invertible.
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Corollary

Let V be a vector space over F. Then V is isomorphic to F" if and only if
dim V = n.

Examples of vector space isomorphic to R":
© P,_1 the set of polynomial of degree at most n — 1
@ MP*9, pg = n, the class p x g matrices where pg = n.

In these examples one can construct an invertible linear map from R” into
these spaces.
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Theorem

Let V, W be finite dimensional vector spaces over F. Let dim V = n,
dim W = m. Let (3, be ordered bases for V and W. Then

o LV, W) = Mpxn(F)

is an isomorphism.

Proof. We need to show that ¢ is an isomorphism.
A direct argument shows that & is linear. In fact, for any
T,U € L(V, W), with matrix representations [T]} and [U]}, respectively,
where 8 = {v1,...,v,} is a basis of V and v = {w,...,wn} a basis of
W, we have that

[T+ Ul =[T]; + U]}

[cT]5 = clTlg
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We also need to show that @ is invertible.

The nullspace is N(®) = {T : V — W : [T]} = 0™*"} and consists of the
linear transformations mapping every vector to the 0 vector. This space
contains only the transformation mapping every vector ot 0, hence ® is
one-to-one.

For every matrix A = [a;], A€ M™ " we can construct the linear
transformation

m
T(\/J-):Za,-jw,-, j=1,...,n
i=1

showing that @ is onto.
Since @ is one-to-one and onto, it is invertible.

Remark: dim L(V, W) = dim Mpyx, =n-m= (dim V) - (dim W).
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The standard representation

let 5 be be ordered basis for an n-dimensional vector space V over the
field F. The standard representation of V' with respect to § is the function

¢g:V = F"

given by ¢g(x) = [x]s.

For any finite dimensional vector space V with ordered basis 3, the map
¢ is an isomorphism.
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The standard representation

Example.

Let 8 = {b1, bo} where by = (3,3,1), b» = (0,1, 3).

Let H = span{by, by}. Find the standard representation of H with respect
to § for x = (9,13, 15).

We need to find ¢, ¢ such that x = c1b1 + ¢ bo.

Solving the equation, we find ¢g(x) = [x]g.
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The Change of Coordinate Matrix

Section 2.5
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Let 3, 3’ be ordered bases for the finite-dimensional vector space V. Let
Q = [IV]}- Then

@ Q isinvertible
Q Yv e V. [V]ﬁ = Q[V]/g/

Remark: Q is called the change of coordinates matrix. It changes
[’-coordinates to 3-coordinates.
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Let 3, 3’ be ordered bases for the finite-dimensional vector space V. Let
Q = [IV]}- Then

@ Q isinvertible

Q Yv e V. [V]ﬂ = Q[V]/g/

Remark: Q is called the change of coordinates matrix. It changes
[’-coordinates to 3-coordinates.

Proof. (1) @ is one-to-one since N(Q) = {0} and it is one onto since for
any v in the 3 basis we can find a v in the 3’ basis.

() [TW)ly = [TI]s
Also [I,(v)]g = [/v]g/ [v]s
Hence [v]s = [/V]g/ [v]s
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Let 5/ ={(2,4),(3,1)} := {wv1,w}, B8 ={(1,1),(1,—1)}. Find the change
of coordinates matrix Q = [/v]5.
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Let 5/ ={(2,4),(3,1)} := {wv1,w}, B8 ={(1,1),(1,—1)}. Find the change
of coordinates matrix Q = [/v]5.

SOLUTION:
I(Vl) = (2a4’) = 31(17 1) + 32(1a _1) = (31 + az,a1 — 32)
Solving the system, one finds a; = 3,a, = —1)

I(V2) = (37 1) = bl(la 1) + b2(17 _1) = (bl + b2, bl - b2)
Solving the system, one finds by = 2, by = 1)

Thus, we have that Q = (_31 i)
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Let T:V — V linear.
What is the relationship between [T]z and [T]a?
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Let T:V — V linear.
What is the relationship between [T]z and [T]a?

Recall that if T : V — V with basis 3 for both domain and codomain
then the natrix representation of T is [T]g =[T]s
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Let T:V — V linear with V finite dimensional vector space. Let 3,3’ be
ordered bases for V. Let Q = [Iv]g,. Then

[Tls = Q'[T]5Q.
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Let T:V — V linear with V finite dimensional vector space. Let 3,3’ be
ordered bases for V. Let Q = [Iv]g,. Then

[Tls = Q'[T]5Q.

Idea of Proof

[T15, = IV (TS IVIG
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Let 5= {(1,1),(1,-1)}, 5/ ={(2,4),(3,1)}. Knowing that

[T]s = (_31 ;) ,
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Let 8 ={(1,1),(1,-1)}, 8/ ={(2,4),(3,1)}. Knowing that
[Tls = (_31 ;) :
find [T]gl.

SOLUTION:

From prior example, we have that the change of variables matrix is

Q:C‘l f)

By theorem above, [T]s = Q_I[T],BQ-

_ 1 -2 1/5 —-2/5
WecomputeQ1:3}r2<1 3>:<1§5 3/5>
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Therefore:

me-amao- (5 2 (3 ) (5 )

Solving the matrix multiplication, we find

[Tler = (_42 é)
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Similar matrices

Definitions

Let A, B € Mpxn(F). We say B is similar to A if and only if there exists
an invertible Q@ € My ,(F):

B =Q 'AQ.

Remark: Being similar is an equivalence relation on M, ,(F).
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Dual Spaces

Section 2.6
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Linear functional

Definition

Let V be a vector space over the field F. A linear transformation
f:V — F, where F is considered as a vector space over itself, is called a
linear functional.

Examples:
1. F:R" SR, (x1,..., %) — x1

2. f:R? = R, (x1,x2) — 2x1 — 3x2

3.F:R" R, (X1,..., %) = X1+ ...+ Xp
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More examples

4. tr: Mpxn — R, A tr(A)
5. evals : {g : R— R} = R, g+ g(5).

6. Let V be a vector space over F, 3 = {v1,...,v,} ordered basis. Let
fi - V — F be defined by:
fi(v) = the i-th coordinate of v with respect to 3.
In other words, if [v]g = (a1,...,an), then fi(v) = a;. In particular,
fi(vj) = 6.
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Let V =R2. Let 3 =1{(2,1),(3,1)} := {v1,v2}. Find £, f>.
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Let V =R2. Let 3 =1{(2,1),(3,1)} := {v1,v2}. Find £, f>.

SOLUTION.
For v € R?, [v]g = (a1, a2) and fi(v) = a1, (V) = ao.

(x,y) =a1(2,1) + a2(3,1) = (2a1 + 3a2, a1 + a2)
Solving the linear system, we obtain:

a=—x4+3y,aa=x—2y

Thus:
fi(v) = —x+3y, h(v) =x -2y
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Given fi(x,y) = —x + 3y and h(x,y) = x — 2y, find B = (v1, ) C R2
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Given fi(x,y) = —x + 3y and h(x,y) = x — 2y, find B = (v1, ) C R2

SOLUTION.
We can write any v = (x,y) € R? as

v=hfwvi+hv
If we choose i =1, f, =0, then v; = fiv; yielding the system of equations
—x4+3y =1
x—2y =0
with solution x = 2,y = 1, so that we obtain v; = (2,1).
Similarly, choosing i =0, >, = 1, then v» = fhv, yielding the system of
equations
-x+3y = 0
x—2y =1

with solution x = 3,y = 1, so that we obtain v, = (3,1).
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Dual space

Definition
For a vector space V over F, let the dual space V* be L(V, F).

Remark: For a finite-dimensional V
dim V* =dimL(V,F) =dimV -dim F = dim V

This means that V and V* are isomorphic as vector spaces over F.
Also, we can define V** as the dual of V*.
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Let V be a vector space and 8 = {vi,...,v,} ordered basis. Let f; be the
i-th coordinate function with respect to 3, as defined above.
Then p* ={f1,...,f,} is an ordered basis for V* and for all g € V*,

g(v) =) _gvif.
i=1

Definition
We call g* the dual basis of j3.
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