MATH 4377 - MATH 6308

Demetrio Labate

dlabate@uh.edu

Outline

(1) Chapter 2

- Section 2.3 - Composition of Linear Transformations
- Section 2.4 - Invertibility and Isomorphism
- Section 2.5 - Change of Coordinate Matrix
- Section 2.6 - Dual Spaces

Composition of Linear Transformations and Matrix Multiplication

Section 2.3

Theorem about the composition of linear transformations

Theorem

Let V, W, Z be vector spaces over the same field. Let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear. Then $U \circ T: V \rightarrow Z$ is linear.

Theorem about the composition of linear transformations

Theorem

Let V, W, Z be vector spaces over the same field. Let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear. Then $U \circ T: V \rightarrow Z$ is linear.

Proof.
We want to verify that linearity holds for $U \circ T$:
(i) $U \circ T(\alpha v)=U(T(\alpha v))=U(\alpha T(v))=\alpha U(T(v))$
(ii)
$U \circ T\left(v+v^{\prime}\right)=U\left(T\left(v+v^{\prime}\right)\right)=U\left(T(v)+T\left(v^{\prime}\right)\right)=U(T(v))+U\left(T\left(v^{\prime}\right)\right)$

Properties of the composition of linear transformations

Theorem

Let $U, S, T: V \rightarrow V$ linear. Then

- $U \circ(S+T)=U \circ S+U \circ T$
- $(U+S) \circ T=U \circ T+S \circ T$
- $U \circ(S \circ T)=(U \circ S) \circ T$
- $I \circ U=U \circ I=U \quad(I$ is the identity $)$
- $a(U \circ S)=(a U) \circ S=U \circ(a S) \quad(a$ scalar)

Matrix of a composition

Goal: Want to write the matrix representation of $U \circ T$.

Theorem

Let $T: V \rightarrow W, U: W \rightarrow Z$ be linear transformations on finite-dimensional vector spaces. Let $\alpha=\left\{\mathbf{v}_{j}\right\}, \beta=\left\{\mathbf{w}_{k}\right\}, \gamma=\left\{\mathbf{z}_{i}\right\}$ be the ordered basis for V, W, and Z. Then $[U \circ T]_{\alpha}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}$.

Matrix of a composition

Goal: Want to write the matrix representation of $U \circ T$.

Theorem

Let $T: V \rightarrow W, U: W \rightarrow Z$ be linear transformations on finite-dimensional vector spaces. Let $\alpha=\left\{\mathbf{v}_{j}\right\}, \beta=\left\{\mathbf{w}_{k}\right\}, \gamma=\left\{\mathbf{z}_{i}\right\}$ be the ordered basis for V, W, and Z. Then $[U \circ T]_{\alpha}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}$.

Proof.
We can write the matrices $[T]_{\alpha}^{\beta}=\left(b_{k j}\right)$ and $[U]_{\beta}^{\gamma}=\left(a_{i k}\right)$. Then

$$
\begin{gathered}
(U \circ T)\left(\mathbf{v}_{j}\right)=U\left(T\left(\mathbf{v}_{j}\right)\right)=U\left(\sum_{k} b_{k j} \mathbf{w}_{k}\right)=\sum_{k} b_{k j} U\left(\mathbf{w}_{k}\right) \\
=\sum_{k} b_{k j}\left(\sum_{i} a_{i k} \mathbf{z}_{i}\right)=\sum_{i}\left(\sum_{k} a_{i k} b_{k j}\right) \mathbf{z}_{i} .
\end{gathered}
$$

Consequently, the matrix representation of $[U \circ T]_{\alpha}^{\gamma}$ is $c_{i j}=\sum_{k} a_{i k} b_{k j}$.

Matrix product

Definition

Let A be an $m \times n$ matrix and B an $n \times p$ matrix. Define the matrix product of A and B to be the $m \times p$ matrix $C=\left(c_{i j}\right)$ given by

$$
(A B)_{i j}=c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Ex:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
0 \\
4
\end{array}\right]=
$$

Matrix notation

Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix.
We can denote the matrix explicitly as

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

Sometimes it is useful to represent the matrix in terms of its columns

$$
\left(\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}
\end{array}\right)
$$

Properties of matrix product

Note: the matrix product is not commutative!

Definition

Let $A \in \mathrm{M}_{m \times n}, B, C \in \mathrm{M}_{n \times p}, D, E \in \mathrm{M}_{q \times m}$. Then
(1) $A(B+C)=A B+A C$
(2) $(D+E) A=D A+E A$
(3) $a(A B)=A(a B)=(a A) B$ (a scalar)
(1) If V is an n dimensional vector space with ordered basis β, then $\left[I_{V}\right]_{\beta}=I_{n}$.
(6) $I_{m} A=A I_{n}$

Theorem

Theorem

Let V, W be finite-dimensional vector spaces with ordered bases β and γ and $T: V \rightarrow W$ be linear. Then $\forall \mathbf{v} \in V$:

$$
[T(\mathbf{v})]_{\gamma}=[T]_{\beta}^{\gamma}[\mathbf{v}]_{\beta} .
$$

Theorem

Theorem

Let V, W be finite-dimensional vector spaces with ordered bases β and γ and $T: V \rightarrow W$ be linear. Then $\forall \mathbf{v} \in V$:

$$
[T(\mathbf{v})]_{\gamma}=[T]_{\beta}^{\gamma}[\mathbf{v}]_{\beta}
$$

Proof. Let $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\gamma=\left\{w_{1}, \ldots, w_{m}\right\}$.
We can expand any $v \in V$ w.r. to β, so it will be sufficient to examine one basis vector. For J fixed, we can write

$$
T\left(v_{J}\right)=\sum_{i=1}^{m} a_{i j} w_{i}
$$

Hence

$$
\left[T\left(v_{J}\right)\right]_{\gamma}=\left(a_{1 J}, \ldots, a_{m J}\right)
$$

and

$$
[T]_{\beta}^{\gamma}\left[v_{J}\right]_{\beta}=\left(a_{i j}\right) e_{J}=\left(a_{1 J}, \ldots, a_{m J}\right)
$$

where $\left(a_{i j}\right) e_{J}$ is extracting the J-th column of the matrix.

Matrix vector multiplication

Multiplying a $m \times n$ matrix A and a vector $\mathbf{x} \in F^{n}$ transforms x into a vector $A \mathbf{x} \in F^{n}$.
Let $A=\left(\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}\end{array}\right)$ and $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$

$$
A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}
$$

showing that $A \mathbf{x}$ is a linear combination of the columns of A.

Matrix vector multiplication

Let A be a $m \times n$ matrix, B a $n \times p$ matrix and $\mathbf{x} \in F^{p}$ a vector. We use the notation $B=\left(\begin{array}{llll}\mathbf{b}_{1} & \mathbf{b}_{2} & \ldots & \mathbf{b}_{p}\end{array}\right)$
We have that $A B x=A(B x)$, so that A acts on the n-vector $B x$
Then

$$
B \mathbf{x}=x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{p} \mathbf{b}_{p}
$$

and

$$
A B \mathbf{x}=x_{1} A \mathbf{b}_{1}+x_{2} A \mathbf{b}_{2}+\cdots+x_{p} A \mathbf{b}_{p}=\left(\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{p}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

Hence $A B=\left(\begin{array}{llll}A \mathbf{b}_{1} & A \mathbf{b}_{2} & \ldots & A \mathbf{b}_{p}\end{array}\right)$, showing that:
each column of $A B$ is a linear combination of the columns of A using weights from the corresponding columns of B.

Left-multiplication transformation

Definition

Let $A \in \mathrm{M}_{m \times n}(F)$. Define $L_{A}: F^{n} \rightarrow F^{m}$ by

$$
L_{A}(\mathbf{x})=A \mathbf{x}
$$

where $\mathbf{x} \in F_{n}$ is a column vector. L_{A} is the left-multiplication transformation given by the matrix A.

Properties of left-multiplication transformation

Theorem

Let A, B be $m \times n$ matrix and β, γ be the standard ordered bases of F^{n} and F^{m}, then:
(1) $L_{A}: F^{n} \rightarrow F^{m}$ is linear.
(2) $\left[L_{A}\right]_{\beta}^{\gamma}=A$
(3) $L_{A}=L_{B} \Leftrightarrow A=B$
(9) $L_{A+B}=L_{A}+L_{B}$,
(6) $L_{a A}=a L_{A} \quad a \in F$
(6) For $T: F^{n} \rightarrow F^{m}$, there exists a unique $m \times n$ matrix C such that $T=L_{C}$ and $[T]_{\beta}^{\gamma}=C$.
(1) If $m=n$, then $L_{I_{n}}=I_{F_{n}}$

Invertibility and Isomorphism

Section 2.4

Invertible transformation

Definition

Let V, W be vector spaces. Let $T: V \rightarrow W$ linear. We define $U: W \rightarrow V$ to be the inverse of T if $T \circ U=I_{W}$ and $U \circ T=I_{V}$. If T has an inverse, T is called invertible.

Invertible transformation

Definition

Let V, W be vector spaces. Let $T: V \rightarrow W$ linear. We define $U: W \rightarrow V$ to be the inverse of T if $T \circ U=I_{W}$ and $U \circ T=I_{V}$. If T has an inverse, T is called invertible.

Remarks about continuous functions from Appendix B :

- If f has an inverse, the inverse is unique. We write f^{-1} for it.
- Given sets A, B, a function $f: A \rightarrow B$ is invertible if and only if f is one-to-one and onto.
This observation applies to linear transformations.

Example

Let $T: P_{1}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ be defined as $T(a+b x)=(a, a+b)$. Verify that:

$$
T^{-1}: \mathbb{R}^{2} \rightarrow P_{1}(\mathbb{R}), T^{-1}(c, d)=c+(d-c) x
$$

Example

Let $T: P_{1}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ be defined as $T(a+b x)=(a, a+b)$. Verify that:

$$
T^{-1}: \mathbb{R}^{2} \rightarrow P_{1}(\mathbb{R}), T^{-1}(c, d)=c+(d-c) x
$$

SOLUTION.

(i) $\left(T^{-1} \circ T\right)(a+b x)=T^{-1}(T(a+b x))=T^{-1}(a, a+b)=$
$a+(a+b-a) x=a+b x$
(ii)
$\left(T \circ T^{-1}\right)(c, d)=T\left(T^{-1}(c, d)\right)=T(c+(d-c) x)=(c, c+d-c)=(c, d)$

Theorem

Theorem
 If $T: V \rightarrow W$ is linear and invertible, then the inverse T^{-1} is linear also.

Theorem

Theorem

If $T: V \rightarrow W$ is linear and invertible, then the inverse T^{-1} is linear also.
Proof.
(i) For $v \in V$, let $T(v)=w$. For $c \in F$,

$$
T^{-1}(c w)=T^{-1}(c T(v))=T^{-1}(T(c v))=c v=c T^{-1}(w) .
$$

(ii) For $v_{1}, v_{2} \in V$, let $T\left(v_{1}\right)=w_{1}, T\left(v_{2}\right)=w_{2}$.

$$
\begin{aligned}
T^{-1}\left(w_{1}+w_{2}\right) & =T^{-1}\left(T\left(v_{1}\right)+T\left(v_{2}\right)\right)=T^{-1}\left(T\left(v_{1}+v_{2}\right)\right)=v_{1}+v_{2} \\
& =T^{-1}\left(w_{1}\right)+T^{-1}\left(w_{2}\right) .
\end{aligned}
$$

Lemma

Lemma

Let $T: V \rightarrow W$ linear and invertible. Let V, W be finite dimensional. Then $\operatorname{dim} V=\operatorname{dim} W$.

Lemma

Lemma

Let $T: V \rightarrow W$ linear and invertible. Let V, W be finite dimensional. Then

$$
\operatorname{dim} V=\operatorname{dim} W
$$

Proof.
Since T is invertible, it is one-to-one and onto, hence nullity $(T)=0$ and $\operatorname{rank}(T)=\operatorname{dim} W$.
By the dimension theorem,

$$
\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim} V
$$

This implies that $\operatorname{dim} W=\operatorname{rank}(T)=\operatorname{dim} V$.

Invertible matrix

Definition

Let A be an $n \times n$ matrix. Say A is invertible if there exists an $n \times n$ matrix B such that

$$
A B=I_{n}=B A
$$

Remark: Such a B is unique, if it exists. Thus, we can write A^{-1} for B.

Recall

Provided $a d-c b \neq 0$:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-c b}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Ex: Given

$$
A=\left[\begin{array}{ll}
1 & 4 \\
2 & 9
\end{array}\right]
$$

find A^{-1}.

Theorem

Theorem

Let V, W be finite dimensional vector spaces with ordered bases β, γ respectively. Let $T: V \rightarrow W$ linear. Then T is invertible if and only if $[T]_{\beta}^{\gamma}$ is an invertible matrix.
Moreover, in this case, $\left[T^{-1}\right]_{\gamma}^{\beta}=\left([T]_{\beta}^{\gamma}\right)^{-1}$.

Theorem

Theorem

Let V, W be finite dimensional vector spaces with ordered bases β, γ respectively. Let $T: V \rightarrow W$ linear. Then T is invertible if and only if $[T]_{\beta}^{\gamma}$ is an invertible matrix.
Moreover, in this case, $\left[T^{-1}\right]_{\gamma}^{\beta}=\left([T]_{\beta}^{\gamma}\right)^{-1}$.
Proof.
The transformation $T: V \rightarrow W$ has matrix representation $[T]_{\beta}^{\gamma}$
If T is invertible, then it is a linear transformation $T^{-1}: W \rightarrow V$ with matrix representation $\left[T^{-1}\right]_{\gamma}^{\beta}$
This also implies that $\left[T^{-1}\right]_{\gamma}^{\beta}=\left([T]_{\beta}^{\gamma}\right)^{-1}$, so that the matrix $[T]_{\beta}^{\gamma}$ is invertible.

Converse direction is left for exercise.

Corollaries

Corollary

Let V be a finite dimensional vector spaces with ordered basis β respectively. Let $T: V \rightarrow V$ linear. Then T is invertible if and only if $[T]_{\beta}$ is an invertible matrix.
Moreover, in this case, $\left[T^{-1}\right]_{\beta}=\left([T]_{\beta}\right)^{-1}$.

Corollary

An $n \times n$ matrix A is invertible if and only if L_{A} is invertible and, in this case, $\left(L_{A}\right)^{-1}=L_{A^{-1}}$.

Isomorphism

Definition

Let V, W be vector spaces. Say V is isomorphic to W if and only if there exists $T: V \rightarrow W$ linear and invertible.
Such a T is called an isomorphism from V onto W.

Remark: The property of being isomorphic is an equivalence relation on the set of vector spaces over a given field. Informally, a vector space V is isomorphic to W if every vector space calculation in V is accurately reproduced in W, and vice versa.

Theorem

Theorem

Let V, W be finite dimensional vector spaces (over the same field). Then V is isomorphic to W if and only if $\operatorname{dim} V=\operatorname{dim} W$.

Proof for \Rightarrow This was proved by Lemma in slide 23.
Proof for \Leftarrow Suppose $\operatorname{dim} V=\operatorname{dim} W$. We need to show that there exists a linear and invertible map $T: V \rightarrow W$.
Let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V and $G=\left\{w_{1}, \ldots, w_{n}\right\}$ a basis of W We define a linear transformation $T: V \rightarrow W$ by $T\left(v_{i}\right)=w_{i}$, for $i=1, \ldots, n$.
Since $\operatorname{span}\left\{T\left(v_{i}\right): i=1, \ldots, n\right\}=\operatorname{span}\left\{w_{i}: i=1, \ldots, n\right\}=W$, then T is onto.
By the Dimension Theorem, nullity $(T)+\operatorname{rank}(T)=\operatorname{dim} V$ implying that $\operatorname{nullity}(T)+\operatorname{dim} W=\operatorname{dim} V$ so that nullity $(T)=0$. This implies that T is one-to-one.
Since T is one-to-one and onto, it is invertible.

Corollary

Corollary

Let V be a vector space over F. Then V is isomorphic to F^{n} if and only if $\operatorname{dim} V=n$.

Examples of vector space isomorphic to \mathbb{R}^{n} :
(1) P_{n-1} the set of polynomial of degree at most $n-1$
(2) $M^{p \times q}, p q=n$, the class $p \times q$ matrices where $p q=n$.

In these examples one can construct an invertible linear map from \mathbb{R}^{n} into these spaces.

Theorem

Theorem

Let V, W be finite dimensional vector spaces over F. Let $\operatorname{dim} V=n$, $\operatorname{dim} W=m$. Let β, γ be ordered bases for V and W. Then

$$
\Phi: \mathcal{L}(V, W) \rightarrow M_{m \times n}(F)
$$

is an isomorphism.
Proof. We need to show that Φ is an isomorphism.
A direct argument shows that Φ is linear. In fact, for any $T, U \in \mathcal{L}(V, W)$, with matrix representations $[T]_{\beta}^{\gamma}$ and $[U]_{\beta}^{\gamma}$, respectively, where $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V and $\gamma=\left\{w_{1}, \ldots, w_{m}\right\}$ a basis of W, we have that

$$
\begin{gathered}
{[T+U]_{\beta}^{\gamma}=[T]_{\beta}^{\gamma}+[U]_{\beta}^{\gamma}} \\
{[c T]_{\beta}^{\gamma}=c[T]_{\beta}^{\gamma}}
\end{gathered}
$$

(continue)

We also need to show that Φ is invertible.
The nullspace is $N(\Phi)=\left\{T: V \rightarrow W:[T]_{\beta}^{\gamma}=0^{m \times n}\right\}$ and consists of the linear transformations mapping every vector to the 0 vector. This space contains only the transformation mapping every vector ot 0 , hence Φ is one-to-one.

For every matrix $A=\left[a_{i j}\right], A \in M^{m \times n}$ we can construct the linear transformation

$$
T\left(v_{j}\right)=\sum_{i=1}^{m} a_{i j} w_{i}, \quad j=1, \ldots, n
$$

showing that Φ is onto.
Since Φ is one-to-one and onto, it is invertible.
Remark: $\operatorname{dim} \mathcal{L}(V, W)=\operatorname{dim} M_{m \times n}=n \cdot m=(\operatorname{dim} V) \cdot(\operatorname{dim} W)$.

The standard representation

Definition

let β be be ordered basis for an n-dimensional vector space V over the field F. The standard representation of V with respect to β is the function

$$
\phi_{\beta}: V \rightarrow F^{n}
$$

given by $\phi_{\beta}(x)=[x]_{\beta}$.

Theorem

For any finite dimensional vector space V with ordered basis β, the map ϕ_{β} is an isomorphism.

The standard representation

Example.

Let $\beta=\left\{b_{1}, b_{2}\right\}$ where $b_{1}=(3,3,1), b_{2}=(0,1,3)$.
Let $H=\operatorname{span}\left\{b_{1}, b_{2}\right\}$. Find the standard representation of H with respect to β for $x=(9,13,15)$.

We need to find c_{1}, c_{2} such that $x=c_{1} b_{1}+c_{2} b_{2}$.
Solving the equation, we find $\phi_{\beta}(x)=[x]_{\beta}$.

The Change of Coordinate Matrix

Section 2.5

Theorem

Theorem

Let β, β^{\prime} be ordered bases for the finite-dimensional vector space V. Let $Q=[I V]_{\beta^{\prime}}^{\beta}$. Then
(1) Q is invertible
(2) $\forall \mathbf{v} \in V:[\mathbf{v}]_{\beta}=Q[\mathbf{v}]_{\beta^{\prime}}$.

Remark: Q is called the change of coordinates matrix. It changes β^{\prime}-coordinates to β-coordinates.

Theorem

Theorem

Let β, β^{\prime} be ordered bases for the finite-dimensional vector space V. Let $Q=[I V]_{\beta^{\prime}}^{\beta}$. Then
(1) Q is invertible
(2) $\forall \mathbf{v} \in V:[\mathbf{v}]_{\beta}=Q[\mathbf{v}]_{\beta^{\prime}}$.

Remark: Q is called the change of coordinates matrix. It changes β^{\prime}-coordinates to β-coordinates.
Proof. (1) Q is one-to-one since $N(Q)=\{0\}$ and it is one onto since for any v in the β basis we can find a v in the β^{\prime} basis.
(2) $[T(\mathbf{v})]_{\gamma}=[T]_{\beta}^{\gamma}[\mathbf{v}]_{\beta}$

Also $\left[I_{v}(\mathbf{v})\right]_{\beta}=\left[I_{v}\right]_{\beta^{\prime}}^{\beta}[\mathbf{v}]_{\beta^{\prime}}$
Hence $[\mathbf{v}]_{\beta}=[I V]_{\beta^{\prime}}^{\beta}[\mathbf{v}]_{\beta^{\prime}}$

Example

Let $\beta^{\prime}=\{(2,4),(3,1)\}:=\left\{v_{1}, v_{2}\right\}, \beta=\{(1,1),(1,-1)\}$. Find the change of coordinates matrix $Q=[I V]_{\beta^{\prime}}^{\beta}$.

Example

Let $\beta^{\prime}=\{(2,4),(3,1)\}:=\left\{v_{1}, v_{2}\right\}, \beta=\{(1,1),(1,-1)\}$. Find the change of coordinates matrix $Q=[I V]_{\beta^{\prime}}^{\beta}$.

SOLUTION:

$I\left(v_{1}\right)=(2,4)=a_{1}(1,1)+a_{2}(1,-1)=\left(a_{1}+a_{2}, a_{1}-a_{2}\right)$
Solving the system, one finds $\left.a_{1}=3, a_{2}=-1\right)$
$I\left(v_{2}\right)=(3,1)=b_{1}(1,1)+b_{2}(1,-1)=\left(b_{1}+b_{2}, b_{1}-b_{2}\right)$
Solving the system, one finds $b_{1}=2, b_{2}=1$)
Thus, we have that $Q=\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)$

Question

Let $T: V \rightarrow V$ linear.
What is the relationship between $[T]_{\beta}$ and $[T]_{\beta^{\prime}}$?

Question

Let $T: V \rightarrow V$ linear.
What is the relationship between $[T]_{\beta}$ and $[T]_{\beta^{\prime}}$?

Recall that if $T: V \rightarrow V$ with basis β for both domain and codomain then the natrix representation of T is $[T]_{\beta}^{\beta}=[T]_{\beta}$

Theorem

Theorem

Let $T: V \rightarrow V$ linear with V finite dimensional vector space. Let β, β^{\prime} be ordered bases for V. Let $Q=[/ V]_{\beta^{\prime}}^{\beta}$. Then

$$
[T]_{\beta^{\prime}}=Q^{-1}[T]_{\beta} Q
$$

Theorem

Theorem

Let $T: V \rightarrow V$ linear with V finite dimensional vector space. Let β, β^{\prime} be ordered bases for V. Let $Q=[I V]_{\beta^{\prime}}^{\beta}$. Then

$$
[T]_{\beta^{\prime}}=Q^{-1}[T]_{\beta} Q
$$

Idea of Proof

$$
[T]_{\beta^{\prime}}^{\beta^{\prime}}=[I V]_{\beta^{\prime}}^{\beta}[T]_{\beta}^{\beta}[I V]_{\beta}^{\beta^{\prime}}
$$

Example

Let $\beta=\{(1,1),(1,-1)\}, \beta^{\prime}=\{(2,4),(3,1)\}$. Knowing that

$$
[T]_{\beta}=\left(\begin{array}{cc}
3 & 1 \\
-1 & 3
\end{array}\right)
$$

find $[T]_{\beta^{\prime}}$.

Example

Let $\beta=\{(1,1),(1,-1)\}, \beta^{\prime}=\{(2,4),(3,1)\}$. Knowing that

$$
[T]_{\beta}=\left(\begin{array}{cc}
3 & 1 \\
-1 & 3
\end{array}\right)
$$

find $[T]_{\beta^{\prime}}$.

SOLUTION:

From prior example, we have that the change of variables matrix is $Q=\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)$.
By theorem above, $[T]_{\beta^{\prime}}=Q^{-1}[T]_{\beta} Q$.
We compute $Q^{-1}=\frac{1}{3+2}\left(\begin{array}{cc}1 & -2 \\ 1 & 3\end{array}\right)=\left(\begin{array}{cc}1 / 5 & -2 / 5 \\ 1 / 5 & 3 / 5\end{array}\right)$.

Therefore:

$$
[T]_{\beta^{\prime}}=Q^{-1}[T]_{\beta} Q=\left(\begin{array}{cc}
1 / 5 & -2 / 5 \\
1 / 5 & 3 / 5
\end{array}\right)\left(\begin{array}{cc}
3 & 1 \\
-1 & 3
\end{array}\right)\left(\begin{array}{cc}
3 & 2 \\
-1 & 1
\end{array}\right)
$$

Solving the matrix multiplication, we find

$$
[T]_{\beta^{\prime}}=\left(\begin{array}{cc}
4 & 1 \\
-2 & 2
\end{array}\right)
$$

Similar matrices

Definitions

Let $A, B \in M_{n \times n}(F)$. We say B is similar to A if and only if there exists an invertible $Q \in M_{n \times n}(F)$:

$$
B=Q^{-1} A Q
$$

Remark: Being similar is an equivalence relation on $M_{n \times n}(F)$.

Dual Spaces

Section 2.6

Linear functional

Definition

Let V be a vector space over the field F. A linear transformation $f: V \rightarrow F$, where F is considered as a vector space over itself, is called a linear functional.

Examples:

1. $f: \mathbb{R}^{n} \rightarrow \mathbb{R},\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1}$
2. $f: \mathbb{R}^{2} \rightarrow \mathbb{R},\left(x_{1}, x_{2}\right) \mapsto 2 x_{1}-3 x_{2}$
3. $f: \mathbb{R}^{n} \rightarrow \mathbb{R},\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1}+\ldots+x_{n}$

More examples

4. $\operatorname{tr}: M_{n \times n} \rightarrow \mathbb{R}, A \mapsto \operatorname{tr}(A)$
5. eval $5:\{g: \mathbb{R} \rightarrow \mathbb{R}\} \rightarrow \mathbb{R}, g \mapsto g(5)$.
6. Let V be a vector space over $F, \beta=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ ordered basis. Let $f_{i}: V \rightarrow F$ be defined by:

$$
f_{i}(\mathbf{v})=\text { the } i \text {-th coordinate of } \mathbf{v} \text { with respect to } \beta .
$$

In other words, if $[\mathbf{v}]_{\beta}=\left(a_{1}, \ldots, a_{n}\right)$, then $f_{i}(\mathbf{v})=a_{i}$. In particular, $f_{i}\left(\mathbf{v}_{j}\right)=\delta_{i j}$.

Example

Let $V=\mathbb{R}^{2}$. Let $\beta=\{(2,1),(3,1)\}:=\left\{v_{1}, v_{2}\right\}$. Find f_{1}, f_{2}.

Example

Let $V=\mathbb{R}^{2}$. Let $\beta=\{(2,1),(3,1)\}:=\left\{v_{1}, v_{2}\right\}$. Find f_{1}, f_{2}.

SOLUTION.

For $v \in \mathbb{R}^{2},[v]_{\beta}=\left(a_{1}, a_{2}\right)$ and $f_{1}(v)=a_{1}, f_{2}(v)=a_{2}$.
$(x, y)=a_{1}(2,1)+a_{2}(3,1)=\left(2 a_{1}+3 a_{2}, a_{1}+a_{2}\right)$
Solving the linear system, we obtain:

$$
a_{1}=-x+3 y, a_{2}=x-2 y
$$

Thus:

$$
f_{1}(v)=-x+3 y, f_{2}(v)=x-2 y
$$

Example

Given $f_{1}(x, y)=-x+3 y$ and $f_{2}(x, y)=x-2 y$, find $\beta=\left(v_{1}, v_{2}\right) \subset \mathbb{R}^{2}$.

Example

Given $f_{1}(x, y)=-x+3 y$ and $f_{2}(x, y)=x-2 y$, find $\beta=\left(v_{1}, v_{2}\right) \subset \mathbb{R}^{2}$.

SOLUTION.

We can write any $v=(x, y) \in \mathbb{R}^{2}$ as

$$
v=f_{1} v_{1}+f_{2} v_{2}
$$

If we choose $f_{1}=1, f_{2}=0$, then $v_{1}=f_{1} v_{1}$ yielding the system of equations

$$
\begin{aligned}
-x+3 y & =1 \\
x-2 y & =0
\end{aligned}
$$

with solution $x=2, y=1$, so that we obtain $v_{1}=(2,1)$.
Similarly, choosing $f_{1}=0, f_{2}=1$, then $v_{2}=f_{2} v_{2}$ yielding the system of equations

$$
\begin{array}{r}
-x+3 y=0 \\
x-2 y=1
\end{array}
$$

with solution $x=3, y=1$, so that we obtain $v_{2}=(3,1)$.

Dual space

Definition

For a vector space V over F, let the dual space V^{*} be $\mathcal{L}(V, F)$.

Remark: For a finite-dimensional V

$$
\operatorname{dim} V^{*}=\operatorname{dim} \mathcal{L}(V, F)=\operatorname{dim} V \cdot \operatorname{dim} F=\operatorname{dim} V
$$

This means that V and V^{*} are isomorphic as vector spaces over F. Also, we can define $V^{* *}$ as the dual of V^{*}.

Theorem

Theorem

Let V be a vector space and $\beta=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ ordered basis. Let f_{i} be the i-th coordinate function with respect to β, as defined above. Then $\beta^{*}=\left\{f_{1}, \ldots, f_{n}\right\}$ is an ordered basis for V^{*} and for all $g \in V^{*}$,

$$
g(\mathbf{v})=\sum_{i=1}^{n} g\left(\mathbf{v}_{i}\right) f_{i}
$$

Definition

We call β^{*} the dual basis of β.

